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PowerPC Architecture

� PowerPC = “POWER Performance Computing”

� POWER = “Performance Optimization with Enhanced RISC”

� PowerPC is a specification for an Instruction Set 
Architecture

� Specifies registers, instructions, encodings, etc.

� RISC load/store architecture

� 32 general-purpose registers, 2 data addressing modes, fixed-
length 32-bit instructions, branches do not have delay slots

� Designed for efficient superscalar implementation

� 64-bit architecture with a 32-bit subset

� 32-bit mode for 32-bit processes on 64-bit implementations



PowerPC Architecture

� Caches

� Instruction and data caches may be separate

� Instructions provided for cache management

� dcbst: Data cache block store

� dcbf/dcbi: Data cache block flush/invalidate

� icbi: Instruction cache block invalidate

� Instruction cache is not required to snoop

� Hardware does not maintain coherence with memory or Dcache

� Data cache coherence with memory (DMA/other CPUs)

� Maintained by hardware on desktop/server systems

� Managed by software on embedded systems



PowerPC Architecture

� Memory management

� Architecture specifies hashed page table structure.

� Implemented in desktop/server CPUs

� 4kB pages; POWER4TM also has 16MB pages

� One hash table for all processes + kernel

� Process “effective” addresses are translated to “virtual” 
addresses using segment table

� 256MB granularity

� In Linux: used to implement MMU “contexts”

� Execute permission is by segment, not by page

� Embedded processes use software-loaded TLB

� PTE format tends to vary between implementations



PowerPC Implementations

� 32-bit implementations: IBM and Motorola

� Desktop/server: 601, 604, 750 (Apple G3), 74xx (Apple G4)

�

Used in Apple machines, previous IBM RS/6000® machines, 
and embedded applications

� Embedded: IBM 4xx series, Motorola 8xx series

� 64-bit implementations: IBM

� POWER3TM: designed for scientific/technical applications

� RS64 family: designed for business applications

� POWER4, POWER4+TM

� Used in current pSeriesTM and iSeries machines

� PPC970 (Apple G5)



Optimizing the kernel

� Want the kernel to go faster

� How do we know what to change?

� Profiling: where is the kernel spending most of its time?

� Micro-benchmarks: what operations are particularly slow?

� Code inspection + intuition: what code looks slow?

� often unreliable

� How do we know if our changes have done any good?

� Profiling

� Benchmarks

� User-space code usually dominates execution time



Profiling

� Measures the time spent in individual kernel routines

� Periodically sample next instruction pointer

� Can use timer interrupt or other periodic interrupt

� Construct histogram

� Map NIP to bucket index, increment bucket

� Postprocessing: map histogram buckets to routines

� Limitations

� Sampling leads to noise in the results

� Usually can't profile code that disables interrupts



Benchmarks

� Micro-benchmarks

� Measure speed of individual kernel operations

� LMBenchTM

� Well-known suite written originally by Larry McVoy

� Application-level benchmarks

� Run some specific user-level application and measure how 
long it takes

� Many exist, both proprietary and open-source

� Kernel compile

� Ensure same source tree, same config, same target architecture 
and same compiler in order to be able to compare results



� Apple PowerBook® G3 laptop

� 400MHz PowerPC 750TM processor (32-bit)

� 32kB I + 32kB D L1 cache, 1MB L2 cache, 192MB RAM

� IBM® pSeriesTM model 650 server

� Eight 1.45GHz POWER4+ processors (64-bit)

� 64kB I + 32kB D L1 cache per cpu, 1.5MB L2 cache per 2 
cpus, 8GB RAM

� IBM “Walnut”  embedded evaluation board

� 200MHz PowerPC 405 processor (32-bit)

� 16kB I + 8kB D L1 cache, 128MB RAM



Cache flushing

� Userspace expects kernel to maintain I-cache coherence 
for pages mapped into user processes

� Pages mapped from files

� Pages copied on write (private mappings, fork)

� Zeroed pages

� Flush sequence: flush_dcache_icache()

� one dcbst per cache line

� one icbi per cache line

� Only required after page has been modified

� by this CPU, another CPU, or DMA



Original approach

� Use flush_page_to_ram hook in MM subsystem

� Called whenever user page mapping is established.

� Profile results (G3 PowerBook, kernel compile)
flush_dcache_icache 6763
ppc6xx_idle 2238
do_page_fault  857
copy_page  537
clear_page  523
copy_tofrom_user  356
do_no_page  231
add_hash_page  220
flush_hash_page  195
do_anonymous_page  194



Optimized approach

� Record I-cache state for each page

� PG_arch_1 bit in page_struct structure

� Cleared when page is allocated

� Set after flush is done

� Flush in update_mmu_cache

� Only if PG_arch_1 bit is clear

� Clear PG_arch_1 in flush_dcache_page

� Called when kernel modifies a page

� Scheme suggested by David S. Miller



Optimized approach – results

� Profile results (G3 PowerBook, kernel compile)
Routine   Original Optimized

flush_dcache_icache 6763 2974
ppc6xx_idle 2238 2468
do_page_fault  857  667
copy_page  537  390
clear_page  523  509
copy_tofrom_user  356  299
do_no_page  231  129
add_hash_page  220   92
flush_hash_page  195  191
do_anonymous_page  194  224

� System time reduced to 29.9 seconds (from 46.0)

� Overall speedup (incl. user time): 5.1%



Optimized approach – results

� LMBench results (excerpt)
Host                 OS  Mhz fork exec sh  
                             proc proc proc
--------- ------------- ---- ---- ---- ----
argo       Linux 2.5.66  400 795. 5065 23.K
argo       Linux 2.5.66  400 659. 2254 11.K
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Further Optimization

� Why are we still flushing so much?

� Page cache pages – flushing eliminated in steady state

� Copy-on-write pages – may contain instructions

� Zero pages – don't want to leak data through Icache

� Most COW or zero pages will never be executed

� Can defer flush if we have per-page execute permission

� not in classic PowerPC architecture

� implemented in POWER4 and in embedded CPUs

� Trap first attempt to execute from the page

� Flush and then grant execute permission



Further optimization: results

� PPC405 embedded processor

� Kernel compile

� System time reduced 5.9%

� Overall time reduced 0.37%

� Profile: flush_dcache_icache hits reduced from 1685 to 31

� Floating-point emulation code is the most time-consuming



Memory copying

� To/from user process space: copy_tofrom_user()

� Used for read, write, and many other system calls

� Copying pages, e.g. copy-on-write faults: copy_page()

� Copying kernel data structures: memcpy()

�

copy_page and copy_tofrom_user are #4 and #6 in 
the profile for a kernel compile (G3 PowerBook)

� Copying code is already well optimized for 32-bit processors.



Memory copy techniques

� Optimum memory copy routine depends on many 
factors.

� Speed of unaligned accesses

� Storage hierarchy – number of levels and latency

� Automatic hardware prefetch mechanisms

� Cache prefetch instructions

� Load-to-use penalty

� Out-of-order instruction execution capability

� Penalty for conditional branches

� Extended instruction sets (e.g. Altivec, MMX/SSE, VIS)



Memory copy techniques

� Optimum routine also depends on:

� Size and alignment of regions to be copied

� Aggressive loop unrolling may only help large copies

� Whether the source or destination are present in cache

� Extended instruction sets may only help if data is in cache

� Statistics for 64-bit kernel (POWER4):

� copy_tofrom_user:

� 84% of calls are for less than one cache lines (128 bytes)

� 43% not 8-byte aligned

� Most copies > 128 bytes were page-size, page-aligned

� memcpy: 98% for < 128 bytes, 13% unaligned



POWER4-optimized memory copy

� Two separate routines.

� Small copy

� handles arbitrary alignment, optimized for small copies.

� Used for memcpy() and most copy_tofrom_user()

� Page copy

� assumes cacheline aligned, 1 page copy

� Used for copy_page() and page-sized and aligned 
copy_tofrom_user()

� copy_tofrom_user() versions have exception 
handling hooks.



POWER4-optimized small copy

� Initially copy 1-7 bytes to get destination address 8-byte 
aligned

� Check whether source address is 8-byte aligned and 
branch to one of 2 copy loops:

� Source aligned:

� 2 loads, 2 stores per iteration (16 bytes)

� Source unaligned:

� 2 loads, 4 shifts, 2 ORs, 2 stores per iteration (16 bytes)

� Loads and stores are 8-byte aligned

� Finally copy 0-7 bytes to finish



POWER4-optimized page copy

� POWER4 architecture details:

� Stores go through to level 2 cache

� L2 cache is organized as 3 interleaved banks

� Optimum order of stores is to store into each bank in turn.

� Highest bandwidth page copy procedure:

� Main loop copies 6 cache lines in interleaved fashion

� 3 blocks of 6 loads, 6 stores (144 bytes)

� Executed 5 times, followed by 6 more stores to complete the 6 
cachelines

� Iterated 5 times followed by smaller loop to finish the page

� Uses lots of registers



Optimized memory copy: results

� Selected LMBench results:
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Optimized memory copy: results

� Kernel compile:

� System time reduced from 8.30 to 8.19 seconds (1.3%)

� Overall time reduced by 0.13%.

� Improvement is very modest but still worthwhile.



PTE Management

� Hardware uses a hash table for storing page table entries 
(PTEs)

� Linux memory management (MM) subsystem uses a 3-
level tree (on 64-bit architectures).

� Linux uses the hash table as a cache of PTEs 
(essentially a level-2 TLB).

� TLB flushing routines (flush_tlb_page(), 
flush_tlb_range(), flush_tlb_mm() etc.) have to 
invalidate the corresponding hash-table PTE.

� Use a bit in the Linux PTE to indicate whether a 
corresponding hash-table PTE exists: _PAGE_HASHPTE.



PTE Management Optimization

� Basic idea: invalidate hash-table PTE when the Linux 
PTE is changed, rather than in the TLB flushing 
routines.

� Reverse mapping (rmap) infrastructure gives us the 
necessary information to do this

� Allows us to map from the address of a Linux PTE to virtual 
address and MM context that it maps.

� Further refinement: batch up the hash-table 
invalidations

� Add an entry to a list when a Linux PTE is changed

� Invalidate all the hash-table PTEs on the list on TLB flush.



Optimized PTE management: results

� 32-bit kernel (G3 PowerBook)

� Kernel compile: no significant change in system time or 
overall time for either approach.

� 64-bit kernel (1.45GHz POWER4+):

� Kernel compile: batched update vs. original implementation

� System time reduced from 8.51 to 8.44 seconds

� Total time reduced from 86.64 to 86.48 seconds

� Batched update code turns out simpler and shorter than 
original implementation.



Conclusions

� I-cache flushing and memory copy optimizations 
produced worthwhile performance improvements.

� PTE management optimization gave no significant 
performance improvement.

� Measurement is key

� Good ideas may not turn out to give any benefit in practice.

� Need both micro-benchmarks and application-level 
benchmarks.

� Kernel profiling is a useful tool for finding profitable 
areas for optimization.
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